Motoarele termice sunt dispozitive care transforma caldura primita in lucru mecanic (motoare termice) ,fie lucrul mecanic in caldura (masini frigorifice).
Un motor termic lucrează pe baza unui ciclu termodinamic realizat cu ajutorul unui fluid.Întrucât, conform principiul al doilea al termodinamici, entropia unui sistem nu poate decât să crească, doar o parte a căldurii preluate de la sursa de căldură (numită și sursa caldă) este transformată în lucru mecanic. Restul de căldură este transferat unui sistem cu temperatura mai mică, numit sursă rece.
Tipuri de motoare termice:
- Motor cu ardere externa , la care sursa de căldură este externă fluidului ce suferă ciclul termodinamic:
- motorul cu aburi
- turbina cu abur
- motor Stirling
- motor cu ardere interna, la care sursa de căldură este un proces de combustie suferit chiar de fluidul supus ciclului termodinamic:
Motorul cu aburi Motorul cu abur este un motor termic cu ardere externă, care transformă energia termică a aburului în lucru mecanic. Aburul sub presiune este produs într-un generator de aburprin fierbere și se destinde într-un agregat cu cilindri, în care expansiunea aburului produce lucru mecanic prin deplasarea liniară a unui piston, mișcare care de cele mai multe ori este transformată în mișcare de rotație cu ajutorul unui mecanism bielă-manivelă. Căldura necesară producerii aburului se obține din arderea unui combustibil sau prin fisiune nucleară.
Motoarele cu abur au dominat industria și mijloacele de transport din timpul Revoluției industriale până în prima parte a secolului al XX-lea, fiind utilizate la acționarea locomotivelor, vapoarelor, pompelor, generatoarelor electrice, mașinilor din fabrici, utilajelor pentru construcții (excavatoare) și a altor utilaje. A fost înlocuit în majoritatea acestor aplicații de motorul cu ardere internă și de cel electric.
Turbina cu abur
Rotorul unei turbine cu abur instalată într-o termocentrală. Direcția de curgere a aburului este de la paletele scurte la cele lungi.Turbina cu abur este o mașină termică rotativă motoare, care transformă entalpia aburului în energie mecanică disponibilă la cupla turbinei. Transformarea se face cu ajutorul unor palete montate pe un rotor cu care se rotesc solidar.În prezent, turbinele cu abur înlocuiesc complet motoarele cu aburdatorită randamentului termic superior și unui raport putere/greutate mai bun. De asemenea, mișcarea de rotație a turbinelor se obține fără un mecanism cu părți în translație, de genul mecanismului bielă-manivelă, fiind optimă pentru acționarea generatoarelor electrice — cca. 86 % din puterea electrică produsă în lume este generată cu ajutorul turbinelor cu abur.
Motor Stirling
În procesul de transformare a energiei termice în lucru mecanic, dintre mașinile termice motorul Stirling poate atinge cel mai mare randament, teoretic până la randamentul maxim al ciclului Carnot, cu toate că în practică acesta este redus de proprietățile gazului de lucru și a materialelor utilizate cum ar fi coeficientul de frecare, conductivitatea termică, punctul de topire,rezistența la rupere, deformarea plastică etc. Acest tip de motor poate funcționa pe baza unei surse de căldură indiferent de calitatea acesteia, fie ea energie solară, chimică sau nucleară.
Spre deosebire de motoarele cu ardere internă, motoarele Stirling pot fi mai economice, mai silențioase, mai sigure în funcționare și cu cerințe de întreținere mai scăzute. Ele sunt preferate în aplicații specifice unde se valorifică aceste avantaje, în special în cazul în care obiectivul principal nu este minimizarea cheltuielilor de investiții pe unitate de putere (RON/kW) ci a celor raportate la unitatea de energie (RON/kWh). În comparație cu motoarele cu ardere internă de o putere dată, motoarele Stirling necesită cheltuieli de capital mai mari, sunt de dimensiuni mai mari și mai grele, din care motiv, privită din acest punct de vedere această tehnologie este necompetitivă. Pentru unele aplicații însă, o analiză temeinică a raportului cheltuieli-câștiguri poate avantaja motoarele Stirling față de cele cu ardere internă.
Mai nou avantajele motorului Stirling au devenit vizibile în comparație cu creșterea costului energiei, lipsei resurselor energetice și problemelor ecologice cum ar fi schimbările climatice. Creșterea interesului față de tehnologia motoarelor Stirling a impulsionat cercetările și dezvoltările în acest domeniu. Utilizările se extind de la instalații de pompare a apei la astronautică și producerea de energie electrică pe bază de surse bogate de energie incompatibile cu motoarele de ardere internă cum sunt energia solară, resturi vegetale și animaliere.
O altă caracteristică a motoarelor Stirling este reversibiltatea. Acționate mecanic, pot funcționa ca pompe de căldură. S-au efectuat încercări utilizând energia eoliană pentru acționarea unei pompe de căldură pe bază de ciclu Stirling în scopul încălzirii și condiționării aerului pentru locuințe.

Secţiune prin schema unui motor de tip Beta Stirling cu mecanism de bielă rombic
1 (roz) – peretele fierbinte al cilindrului, 2 (cenuşiu închis) - peretele rece al cilindrului (cu 3 (galben) racorduri de răcire), 4 (verde închis) – izolaţie termică ce separă capetele celor doi cilindri, 5 (verde deschis) – piston de refulare, 6 (albastru închis) – piston de presiune, 7 (albastru deschis) - volanţi,
1 (roz) – peretele fierbinte al cilindrului, 2 (cenuşiu închis) - peretele rece al cilindrului (cu 3 (galben) racorduri de răcire), 4 (verde închis) – izolaţie termică ce separă capetele celor doi cilindri, 5 (verde deschis) – piston de refulare, 6 (albastru închis) – piston de presiune, 7 (albastru deschis) - volanţi,
Niciun comentariu:
Trimiteți un comentariu